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SUMMARY 

Wave guides p lay  a s i g n i f i c a n t  r o l e  i n  microwave space communication sys- 
tems. The a t tenua t ion  per  u n i t  length o f  t he  guide depends on i t s  cons t ruc t i on  
and design frequency range. 
developed t o  study TM electromagnet ic propagat ion I n  complex two-dimensional 
absorb’ing wave guides. The ana lys is  models the  electromagnet ic absorp t ive  
c h a r a c t e r i s t i c s  o f  a general wave guide which could be used t o  determine w a l l  

i s  be l ieved t h a t  t he  general conclusions drawn by us ing  t h i s  s impler two- 
dimensional geometry w i l l  be fundamentally t h e  same f o r  o ther  geometries. 

A f i n i t e  element Galerk in  fo rmula t ion  has been 
pr) 

M - 
pr) I 
w losses o r  s imulate r e s i s t i v e  terminattons f i t t e d  i n t o  the  ends o f  a guide. I t  

I n  fo rmula t ing  the  f i n i t e  element so lu t i on ,  t he  continuous electromag- 
n e t i c  f i e l d  i s  d i v ided  i n t o  a number o f  t r i a n g u l a r  d i s c r e t e  areas staked out 
by nodal po in ts  which are  spread through out the  f i e l d .  The nodal po in ts  can 
be placed a t  any p o s i t i o n  des i red.  Thus, the  f i n i t e  element fo rmula t ion  can 
r e a d i l y  handle geometr ical  compl icat ions such as a x i a l  and t ransverse v a r i -  
a t i o n s - i n  w a l l  p roper t i es  as w e l l  as cross-sect ional  area va r ia t i ons .  The 
governing electromagnet ic f i n i t e  element equations and the  appropr ia te  bound- 
a ry  cond i t ions  are  presented f o r  a f i n i t e  duct w i t h  known i n c i d e n t  modes. 
entrance and e x i t  boundary cond i t ions  a r e  developed by coup l ing  the  f i n i t e  
element so lu t i ons  t o  t h e  eigen funct ions o f  an i n f i n i t e  un i fo rm p e r f e c t  con- 
duc t i ng  duct.  
w i t h  p e r f e c t  conduct ing and absorbing duc t  wa l l s .  

The 

Example so lu t i ons  a r e  presented f o r  electromagnet ic propagat ion 

INTROOUCT I ON 

Wave guides p lay  a s i g n i f i c a n t  r o l e  i n  microwave space communication sys- 
tems.  Depending on the  ma te r ia l  p roper t ies  o f  the  wave guide and i t s  design 
frequency range, the  guide w i l l  a t tenuate a s igna l  t ransmi t ted  i n  the  guide 
( r e f .  1, p. 295). I n  general, losses i n  wave guides are  undesirable;  however, 
i n  power measurement app l i ca t ions ,  e lectromagnet ic wave guides a re  sometimes 
f i t t e d  w i t h  f i x e d  r e s i s t i v e  terminattons, movable vane o r  f l o p  a t tenuators  
( r e f .  1, p. 326) t o  absorb r a d i a t i o n  and reduce r e f l e c t i o n s .  To b e t t e r  under- 
stand the  microwave absorpt ion process, i n  the  present  paper a f l n i t e  element 
Ga lerk in  fo rmula t ion  has been developed t o  study t h e  power absorpt ion charac- 
t e r i s t i c s  o f  an electromagnet ic wave guide. 

. 
The numerical program t o  be presented here in  i s  complimented by Grant 

e f f o r t  a t  Ohio S ta te  Un ive rs i t y ,  the U n i v e r s i t y  o f  I l l i n o i s ,  and Northwestern 
U n i v e r s i t y .  The work a t  Ohlo S ta te  and I l l i n o i s  i s  p r i m a r i l y  a n a l y t i c a l  I n  
na ture  ( r e f .  2) w h i l e  the  research a t  Northwestern employs t h e  t r a n s i e n t  f i n i t e  
d i f f e r e n c e  technique ( r e f s .  3 and 4). I n  add i t i on ,  R i c e  ( r e f .  5 )  a t  NASA Lewis 
i s  developing simple a n a l y t i c a l  c o r r e l a t i o n  f o r  e l e c t r o n i c  p roper t i es  which 



produce the highest possible attenuation for a single mode in an infinitely 
long duct. 
since the analysis gives a reasonable estimate of the electrical properties 
which will produce significant attenuation. 

Such an analysis 1s extremely useful for a numerical program, 

The finite element solution developed herein models the variable property 
Helmholtz equation in a rectangular two-dimensional wave guide with complex 
structural wall boundary conditions and multiple mode inputs. In the finite 
element solution, the continuous electromagnetic field is divided into a num- 
ber of triangular discrete areas staked out by nodal points which are spread 
throughout the field. Since the nodal points can be placed at any positioned 
desired, the finite element formulation can readily handle geometrical compli- 
cations such as axial variations in wall properties as well as cross-sectional 
area variations. This finite element solution bypasses the conventional 
eigenvalue problem with its associated modes which have been considered in 
earlier works on electromagnetic propagation In ducts (ref. 6, p. 88). 

The inlet and exit boundary conditions associated with the finite element 
analysis of electromagnetic propagation must be flexible enough to account for 
reflection of energy which can occur from wall changes inside the guide or 
from abrupt exit terminations. The appropriate boundary conditions are simi- 
lar to those associated with flow gust disturbances, duct acoustics (ref. 7), 
and thermal wave propagation (ref./8). These problems occur i n  unsteady aero- 
dynamics. An additlon modivation for the present study is the continuing 
interest at NASA Lewis in numerical modeling of unsteady aerodynamics and 
general wave propagation in ducts. 

In setting up the inlet and exit boundary conditions, the variable p,rop- 
erty absorbing portion of the wave guide is assumed to be joined by uniform, 
infinitely long, and perfectly conducting entrance and exit ports. 
entrance port, a known source of electromagnetic energy is assumed to be inci- 
dent on the complex absorbing region which is to be modeled by the finite ele- 
ment analysis. For a single dominant input mode, Silvester, and Ferrar 
(ref. 6, p. 177) developed some mathematical constraints for the entrance and 
exit conditions. For this paper, however, the entrance and exit boundary con- 
ditions are developed for multimode propagation by coupling the finite element 
solutions to the complete set of eigen functions of a uniform conducting duct. 
In acoustics, numerical calculations using this boundary constraint were found 
to be i n  excellent agreement with experimental results (ref. 9). 

In the 

First, the governing electromagnetic equation and the appropriate bound- 
ary conditions are presented. Next, the finite element modeling I s  presented. 
Immediately following the mathematical development, numerical validation exam- 
ples are presented and compared with known analytical results. Finally, the 
last set of example problems treat electromagnetic propagation with an absorb- 
ing boundary. 

NOMENCLATURE 

mode amplitude of plus going entrance waves, equation (29) 

mode amplitude of reflected negative going entrance waves, 
equation (29) 
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magnetic flux density B 

B,+ 

B&n 
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HX 

Hi 0 
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Hro 

Hxt 
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I Hxmax I 

I Hxmi n I 

HA 

HX 
N 

I 

mode amplitude of plus going exit waves, equation (33) 

modified mode amplitude of plus going exit waves, equation (52) 

characteristic duct height 

dimensionless entrance height bA/b' 

dimens i on1 ess exi t helght bb/b' 

speed o f  light in vacuum 

electric field, equation (6) 

harmonic electric field vector, E(x,y,z) 

unit vectors in coordinate directions 

right hand side, equatlon (80) 

dimensionless frequency, equation (9) 

magnetic intensity, equation (6) 

harmonic magnetic intensity vector, H(x,y,z), equation (8) 

x component of magnetlc intensity 

magnitude o f  incident magnetic intensity, equation (92). 
I 

incident magnetic intensity, equation (91) 

reflected magnetic intensity, equation (91) 

magnitude o f  reflected magnetic intensity, equation (93) 

transmitted magnetic intensity, equation (94) 

magnitude of transmitted mangetic intensity, equation (94) 

maximum value of magnitude o f  magnetic intensity in plotting 
domain, equation (106) 

minimum value o f  magnitude o f  magnetic intensity in plotting domal 
n, equation (106) 

normalizing magnitude o f  magnetic intensity 

finite element approximation to Hx 

total number o f  line Increments, equation (46) 

Im imaginary part 
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fl 
global s t i f f n e s s  matr ix ,  equat ion (80) 

element s t i f f n e s s  ma t r i x ,  equat ion ( 7 6 )  

element s t i f f n e s s  c o e f f i c i e n t ,  equat ion ( 7 7 )  

wave number, equat ion (28) 

a x i a l  modal wave number, equat lon (30) 

element modal wave number, equat ion (!8) 

dimensionless length,  L ' / b '  

p o s i t i o n  o f  m a t e r i a l  change, see equat ion (99) 

number o f  elements 

mode number, equat ion (48) 

number o f  nodes 

number o f  modes 

l o c a l  i n t e r p o l a t i o n  shape func t i ons  

mode number, equat ion (29)  

outward normal u n i t  vector 

Poynting vectors,  equation (87 )  

t o t a l  power t rans fe r red ,  equat ion (88) 

res idua l  e r r o r ,  equat ion ( 6 0 )  

r e a l  p a r t  

l eng th  of  l i n e  segment on boundary 

dimensionless time, equat ion ( 5 )  

vector quant i ty ,  equat ion (64)  

weight, equation (58) 

dimensionless t ransverse distance, x ' / b '  , equat ion ( 7 )  

dimenslonless t ransverse distance, y ' / b '  , equat ion ( 7 )  

dimensionless a x i a l  d istance, z ' / b '  , equat ion ( 7 )  

damping c o e f f i c i e n t ,  equat ion (96) 
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Ea 
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propagation coefficient, equation (96) 

reflection coefficient, equation (101) 

complex propagation constant, equation (92) 

dielectric constant, c'/c; 

permlttivlty in entrance duct 

perml tt 1 vi ty 

permittivity In vacuum 

conductance permittivity, equation (12) 

total permittivity, equation (12) 

impedance, equation (13) 

permeability, l ~ ' / l ~ ;  

dimensional permeability 

permeability in vacuum 

conductance, equation (7) 

transmission coefficients, equation (102) 

global unknown vector, equation (79) 

scalar, equation (62) 

angular velocity, equation (9) 

Subscripts 

scalar vector components 

Superscripts 

region 1 

region 2 

complex conjugation 

dimensional quantity 

transpose 

vector quantity 
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GOVERNING EQUATION - AND MODEL 

Basic Model 

Consider an electromagnet ic wave propagat ing f rom a t r a n s m i t t i n g  antenna 
and i n c i d e n t  on a two-dimensional wave guide as shown i n  f i g u r e  1. As  the  wave 
encounters the  i n l e t ,  energy w i l l  be d i f f r a c t e d  from t h e  l i p  and red i rec ted  
i n t o  space, w h i l e  some energy w i l l  couple t o  t h e  duct  modes and be t ransmi t ted  
i n t o  t h e  guide. I ns ide  the  guide, d i f f r a c t i o n ,  absorpt ion,  and r e f l e c t i o n  
w i l l  occur a t  var iab le  p roper ty  absorbing regions. F i n a l l y ,  energy w i l l  be 
t ransmi t ted  down the duct and some w i l l  be r e f l e c t e d  back out  t he  i n l e t .  

The present paper w i l l  focus on the  i n t e r a c t i o n  o f  propagat ing duct modes 
w i th  the  w a l l  as shown i n  f i g u r e  2. The model i s  composed o f  t h ree  reg ions.  
I n  the  uni form, i n f i n i t e l y  long and p e r f e c t l y  conduct ing entrance and e x i t  
regions, t he  exact s o l u t i o n  o f  t he  governing d i f f e r e n t i a l  equations can be 
e a s i l y  w r i t t e n  i n  terms o f  the  duct modes. 
reg ion  o f  f i g u r e  2, the f i n i t e  element ana lys is  i s  employed t o  determine the  
f i e l d  i n  the  var iab le  p roper ty  nonuniform regions. As p rev ious l y  discussed, 
the  t r a n s m i t t i n g  antenna, (see f i g .  l), sends electromagnet ic waves i n t o  the  
guide which are  e i the r  re f l ec ted ,  absorbed, o r  t ransml t ted  i n  the  absorbing 
reg ion.  Electromagnetic mode r e f l e c t i o n  a t  t h e  i n l e t  t o  the  duct  absorbing 
reg ion  and the  transmission a t  the  o u t l e t  o f  the  absorbing reg lon  a re  modeled 
by matching the  f i n i t e  element s o l u t i o n  i n  the  i n t e r i o r  of the  nonunl formi ty  
t o  a n a l y t i c a l  e igenfunct ions expansions i n  the  uni form i n l e t  and o u t l e t  ducts .  
Th is  permi ts  a multimodal representa t ion  account ing f o r  r e f l e c t i o n  and mode 
conversion by the nonuni forml ty  ( r e f .  9 ) .  

I n  the  absorbing v a r i a b l e  p roper ty  

MAXWELL'S EQUATION 

The governing d i f f e r e n t i a l  equations descr ib ing  the  propagat ion o f  e lec-  
tromagnetic energy are the two Maxwell 's equations. 

( 1 )  
a 

V ' X  E; (X ' ,Y ' ,Z ' , t ' )  = - a t ' y ' i $  ( x ' , y ' , z ' , t ' )  

- 
E' E;(x ' ,y ' ,Z ' , t ' )  ( 2 )  v'xfi; ( x ' , y ' , z ' , t ' )  = a'E;(X',y',t ') + at' a 

I n  the  foregoing equations, the  pr ine ,  I ,  i s  used t o  denote a dimensional 
quan t i t y .  These and a l l  o ther  symbols used i n  the repo r t  a re  def ined i n  the 
Nomenclature. Vector equations ( 1 )  and ( 2 )  represent s i x  sca la r  equations 
needed t o  determlne the  s i x  unknowns scalars  E '  ( x l , y ' , z l , t t ) ,  
E '  ( x '  , Y '  , z '  3 '  ) ,  
and H t z ( x '  , y ' , z ' , t ' ) .  The subscr ip t  t Ind i ca tes  t ime aependent f i e l d s .  
L a t e r ,  when the assumptlon o f  harmonic t i m e  dependence i s  assumed, the  sub- 
s c r i p t  t w i l l  be dropped. 

t x  
x '  ,Y I ,  z '  A '  1, Htx( x '  ,y ' , z '  ,t ' ) , Ht ( x '  , y ' ,  z '  3 ' ) , t Y  

The nondimenslonal izat lon begins w i t h  the dimenslonless magnetic f i e l d  
H I ( x l , y ' , z ' , t ' ) ,  p e r m i t t i v i t y  t', permeab i l i t y  V I ,  and e l e c t r i c  f i e l d  
E ' ( x ' , y l , z ' , t ' )  and introduces t h e i r  nondimensional equiva lents  (no prlmes). 
t 
t 
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The s c a l i n g  f a c t o r  a re  the  entrance duct he igh t  b ' ,  p e r m i t t i v i t y  o f  a vacuum 
E ' ,  permeab i l i t y  o f  a vacuum p', v e l o c i t y  o f  l i g h t  i n  a vacuum c ' ,  and 
some magnitude o f  magnetic i n t e n s i t y  Hh. Using these parameters, t h e  
dimensionless Maxwell 's equations become 

0 0 0 

where c i s  the  d i e l e c t r i c  constant w i t h  the  fo l l ow ing  dimensionless quant i -  
t a t i v e  def ined: 

C '  

b '  t = -  O t '  c; 

2 '  x = r ; T  Y = y' b l  Z = b '  X '  a ' b '  
C ' C '  

a = -  
0 0  

As a f u r t h e r  s i m p l i f i c a t i o n ,  f o r  harmonic steady s t a t e  ana lys is  i t  i s  
usua l l y  assumed 

where t h e  dimensionless frequency i s  def lned 

w'b' 
o =  o = 2 n f  

f ' b '  
f = -  

C '  c; 0 

( 7 )  

( 9 )  

S i m i l a r  assumptions f o r  E are a l so  employed. S u b s t i t u t i n g  equations (8) and 
( 9 )  i n t o  equations ( 3 )  and ( 4 )  y i e l d s  

where t h e  t o t a l  p e r m i t t i v i t y  inc ludes conduct ion 

C T  = C -jCc 

The magnetic and e l e c t r i c  f i e l d s  a re  now considered t o  be harmonic s p a t i a l l y  
dependent var iab les .  

7 



NONHOMOGENEOUS VARIABLE PROPERTY WAVE EQUATION 

The number of dependent var iab les  can be reduced by combining Maxwel l 's  
equations (10) and (11) i n t o  a s i n g l e  wave equat ion.  This opera t ion  w i l l  l ead  
t o  a 50 percent reduc t ion  of computer storage requirements. It i s  a l s o  d e s i r -  
ab le  t o  develop a wave equat ion t h a t  could be used f o r  vary ing  media proper-  
t i e s  so t h a t  no spec ia l  t reatment o f  t he  i n t e r f a c e  between mate r ia l s  i s  
requi red.  That i s ,  t he  same equations apply i n  the  duct and i n  the  absorber 
reg ion  and only  t h e  ma te r ia l  p roper t i es  a re  changed. 

Rewr i t ing  equation (11). 

and t a k i n g  the  c u r l  

ox [$I = ox€ 

The constants j o  a r e  independent o f  space and can be p u l l e d  out  t he  c u r l  
operator i n  equation (15); however, CT must remain I n s i d e  s ince CT i s  now 
assumed a func t i on  o f  t he  s p a t i a l  dimensions. 

S u b s t i t u t i n g  equatlon (16) i n t o  equat ion (10) y i e l d s  our nonhomogenous 
governing wave equation. 

O x  [:I= o 2 -  pH 

TM VARIABLE PROPERTY2D WAVE EQUAT I ON 

As customary i n  electromagnet ics as w e l l  as f l u i d  mechanics and heat 
t r a n s f e r  ( r e f .  l o ) ,  simple i n l e t  p r o f i l e s  o f  t he  dependent v a r i a b l e  a re  com- 
monly assumed. Herein, t ransverse magnetic (TM) waves w i l l  be assumed t o  
represent the  i npu t  electromagnet ic modes propagat ing down the  entrance duc t  
towards the  nonunlform va r iab le  proper ty  sec t i on  o f  the  duct .  
i s  made t h a t  only one component o f  the  vec tor  w i l l  e x i s t  i n  the  problem 
domain, t h a t  I s ,  

The assumption 

- 
H(Y,Z) = Hx(y,z)e, (18) 

where ex i s  a u n i t  vector i n  the  x d i r e c t i o n  ( i n t o  the  paper as shown i n  
f i g .  3 ) .  The magnitude of the s ing le  x component o f  t he  vector  H depends 
only  on the  two s p a t i a l  dimensions y and z.  The quest ion remains, however, 
would a z component o f  the magnetic f i e l d  be generated i n  the  the  v a r i a b l e  
p roper ty  reglon. 

8 



The v a l i d i t y  o f  assumption (18) can be v e r i f i e d  by cons idera t ion  o f  the  
magnetic source equat ion (divergence equation); 

v . B = o  (19) 

where B i s  t h e  magnetic f l u x  densi ty,  a vec tor  q u a n t i t y  def ined by 

Recal l ,  t he  above equat lon can be der ived d i r e c t l y  from Maxwell 's f i r s t  two 
equations ( r e f .  7, p. 280). Combining equat ions (19) and (20) and us ing  the  
usual vector  i d e n t i t i e s  ( r e f .  7, p. 578) equat ion 19 can be r e w r i t t e n  as 

p(y,,)V R + A Vp(Y ,Z )  = 0 (21  1 
S u b s t i t u t i n g  i n  equat ion (18) i n t o  equation (21) y i e l d s  

Since a l l  t he  terms on the  l e f t  hand side o f  equat ion (22 )  are i d e n t i c a l  t o  
zero, equat ion (18) i s  a v a l i d  so lu t ion  t o  t h e  problem, independent o f  p roper ty  
and geometry changes. 

Using equat ion (18) t o  evaluate the term i n  brackets i n  equat ion (17) 
y i e l d s  

H a x  
Y aY e, 

H - - -_--  1 a x e VxH 

'T 'T az 
- 

Next, t h e  complete expression f o r  the  l e f t  hand s ide  o f  equat ion (17) i s  de ter -  
mined by tak ing  the  c u r l  o f  equat ion ( 2 3 ) .  as fo l lows,  

F i n a l l y ,  s u b s t i t u t i n g  equat ion (24 )  f o r  t he  l e f t  hand s ide  o f  equat ion (17) 
y i e l d s  t h e  sca la r  wave equation, 

I n  vec tor  form, 

1 2 V - VHx + o pHx = 0 
'T 

Equat ion ( 2 6 )  represents the governlng wave equat ion t o  be solved by 
f i n i t e  element theory.  

9 



UNIFORM DUCT ANALYTICAL SOLUTIONS 

The a n a l y t i c a l  so lu t ions  of equat ion (26) f o r  wave propagat ion i n  the  

The 
un i fo rm p e r f e c t  conducting i n l e t  and e x i t  p o r t s  w i l l  be employed t o  g i ve  the  
proper te rmina t ion  boundary cond i t ions  f o r  t h e  f i n i t e  element reg ion.  
a n a l y t i c a l  s o l u t i o n  f o r  TM waves t r a v e l i n g  between p a r a l l e l  p l a t e s  i s  standard 
textbook ma te r ia l  ( r e f .  11, p. 458) and q u i t e  simple i n  form. Consequently, 
these so lu t i ons  w i l l  now be presented be fore  t h e  complete d iscuss ion  o f  bound- 
a r y  cond i t i ons  associated w i th  the  f i n i t e  element s o l u t i o n  i n  t h e  v a r i a b l e  
p roper ty  reg ion .  

I n  t h e  entrance and e x i t  regions, t h e  medium p roper t i es  a re  assumed con- 
s tan t  and r e a l  ( a  = 0) such t h a t  t h e  wave equat ion (26) reduces t o  

where the  f r e e  medium wave number k equals 

k = o f i  

I n  the  a n a l y t i c a l  entrance region, t h e  eigen value s o l u t i o n  o f  equat ion (27) 
y i e l d s  ( r e f .  11, p. 458) f o r  the  coord inate system shown i n  f i g u r e  3. 

For t h e  e jut time dependence used here, equat ion ( 8 ) .  t he  A I  e- jkznz term 
I 1  

represents a wave propagat ing i n  the  p o s i t i v e  
represent a wave moving i n  the  negat ive 
occur had a 

z d i r e c t i o n  w h i l e  the  A i  e jkznZ 

e- jwt t i m e  dependence been assumed, see reference 11, p. 308. 
z d i r e c t i o n  ( e x a c t l y  opposi te  would 

The a x i a l  wave number kzn i n  equat ion (29) i s  

I n  - 1 ) ~  2 - t k d y (  ) (b) 5 
bak kzn - 

Equation (31) represents the  c o n d i t i o n  where the  mode i s  cu t -o f f  (nonpropa- 
ga t i ng ) .  The negative s ign  i s  chosen t o  produce mode decay i n  the  p o s l t i v e  
d i r e c t i o n  f o r  the A+ modes and mode decay i n  the  negat ive  d i r e c t i o n  f o r  t h e  
A- modes. S i n c e  the c h a r a c t e r i s t i c  duct  he igh t  b l  w i l l  be se t  equal t o  the 
entrance duc t  height, ba w i l l  have a.numerica1 value o f  u n i t y .  

The modal expression represented by equat ion (29) has been t ransacted t o  
a t o t a l  of N modes of the  i n f i n i t e  number poss ib le .  Thus, a t o t a l  of 

m 
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. 

have been introduced. Nm Aim unknown modal amplitudes Ai, Ai, . . . Nm 
constraint equations will be required to determine each of these unknown 
reflection coefficients. The equations used to difine these coefficients will 
be introduced in the following section on boundary conditions. 

The gradient of Hx in the axial direction will play a major role in 
the finite element solution to be presented. The gradient is written as 

Nm - aHxa =x -jAikZn cos ( J n ba - l)r y)e-jkznz 
az 

n=l 

rn 
N 

I n  - 1 ) ~  tc jA,kzn cos( ba y)etjkznz 
n-1 

Finally, in the exit port, a similar solution of the following form exits 

N ._ m 
cos (y b y) e-jkznz 

n=l 

and 

m N 

(33 )  

Here, only positive going waves are assumed and the eigenfunctions and wave 
number are expressed in the height of the exlt duct bb. 

BOUNDARY CONDITIONS 

A variety of boundary condltion will be used in the finite element solu- 
tion of equation (26) for the model problem which I s  displayed In schematic 
form in figure 2. Each of the required conditions will now be briefly 
discussed. 

Input Condition 

The analysis assumes a given number of propagating (see eq. (30)) A; 
modes. These modes effectively set the level of the magnetic field i n  the 
finite element region and can be viewed as the equivalent Dirchlet boundary 
conditions required for eliptic boundary value problem as defined by 
equation (26). 

11 



Per fec t  Conducting Wall Condi t ions 

A t  a per fect  conduct ing w a l l ,  t he  t a n g e n t i a l  component of the  e l e c t r i c  
f i e l d  vec tor  i s  zero ( r e f .  11, eq. 7-52a o r  r e f .  12, eq. 1.69) 

E t  = 0 

Thus, f o r  example, 

(35) 

Along any o f  the ho r i zon ta l  p e r f e c t l y  conduct ing surfaces o f  f i g u r e  2. 
Since, the  Hx equat ion (26) has been program f o r  so lu t i on ,  t he  r e l a t i o n s h l p  
between EZ given by equat ion (35) and Hx a t  t he  boundary must be developed. 
I n  p a r t i c u l a r ,  the f i n i t e  element ana lys is  w e l l  r e q u i r e  i n fo rma t ion  on the  
grad ien t  o f  Hx a t  a p e r f e c t  conduct ing boundary. 

From equation (14),  t he  € 2  component o f  Maxwell equat ion can be w r i t t e n  
as ( r e f .  13, eqs. (1)  t o  ( 4 ) ) .  

aH aH 

= jiq [i? - $1 
o r  s ince Hy = 0 

Since E, i s  zero a t  p e r f e c t  conduct ing h o r i z o n t a l  boundary 

- -  - 0  aHX 

aY 

(37) 

(39) 

Now, s ince the  f i n i t e  
V Hx a t  i t s  boundary, l e t  

VHx n = OHx 

Since on ly  the  d o t  product 

element ana lys is  w i l l  r e q u i r e  in fo rmat ion  about 
us expand a t  the  upper h o r i z o n t a l  boundary. 

aHX ey t - e z )  ey aHX 
e =  Y ( s e x t -  ax  a Y  a z  

ey ey gives a con t r i bu t i on ,  

- aH X 

OHx n = - 
aY 

Since the  e l e c t r i c  f i l e d  tangency cond i t i on  f o r  t h i s  problem r e q u i r e s .  aHx/aY 
i s  zero (eq. (39)) 

a t  the  upper hor izon ta l  surface. 
app l ies  t o  a l l  per fect  conducting surfaces no mat te r  t h e i r  s p a t i a l  o r i e n t a t i o n .  

I t  i s  e a s i l y  shown t h a t  t h i s  c o n d i t i o n  

12 



Continuity at Inlet and Exit 

/bapixa(y) 0 
- ii(u)]cosfm i,"") dy 

In general, the tangential component of an H field is continuous across 
an interface (ref. 12, eq. (1.61)) except at perfect conductor where a surface 
current exists (ref. 1 1 ,  eqs. 7-52(b)). Thus, the boundary condition becomes 

= O 

"lt = H2t (43) 

or the tangential components are Hx 

where Hxa is the modal representation of magnetic field in the analytical 
inlet region given by equation (29) and 'ii; 
approximation for Hx at the interface. The hat over Wx implies an approx- 
imate finite element numerical solution to be discussed in detail in a follow- 
ing section. 

At the inlet interface, shown by the dashed line in figure 2, the 
in the analytical region given by equation (29) must match the magnetic field 
defined by the finite element nodal points along the boundary interface. Many 
possible matching methods can by employed for this boundary condition, such as 
point collocation, least squares or weighted residuals. A weighted residual 
approach was used herein with the weighting function equal to the 
eigenfunctions 

represent the finite element 

Hxa 

I 2  = 0 

(Nm equations, m = 1,2,3, Nm) (45)  

Equation (45) represents Nm separate equations; one for each coefficient 
defined in equation (29). 

For a particular weighting function cos ((m - l)ny/ba), a very simple 
numerical approximation for the line integral can be written as 

(Nm equation, m = 1,2,3, . . . Nm) (46) 

where the Ayi is defined as shown In figure 4. Substituting in the value of 
Hxa from equation (29) yields, movlng known A+ coefficients to right 
hand side, 
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= - I ayi cos( (m - l)‘Yi) $ Ai cos ((n -b:)*Yi) 

( z  = 0)  n= ba 1 =1 

(Nm equations, m = 1,2, . . . Nm) (47) 

where the mth equation i s  defined by the first cosine term on both sides of 
equation (47). In slightly different form 

N 2 B:.[k COS (w b y,) COS (- ba y,) AY,] 
n=l i =1 

I 
- Hi cos (w yI)AYi = 0 

b 
i =1 ( z  = L )  

(Nm separate equations, m = 1,2, . . . Nm) (50)  

14 

L 
~ ~-~ 

~~ 

(Nm separate equations. m = 1,2, . . . Nm) (48) 

The terms on the right side represent the known forcing functions to the 
equation since all the values of Ah are assumed known. The left hand side 
contains the Nm unknown reflection coefficients and the unknown nodal ‘values 
of H i  at the finite element grid. Recall the modal equation used to specify 
the oncoming and reflected field was truncated to contain Nm unknown reflec- 

. Equation (48) represents one of the tion coefficients A;, A;, Ai, . . . ANm 
Nm scalar equations required to determine all A, reflective coefficients. 
At the exit, equation (45) becomes 

(N, equations, m = 1,2,3, . . . Nm) 

or In terms of the modes I (49)  



In contrast to equation (48) ,  equation (50) has only the B i  values as 
unknown representing the positive going waves. No negative waves are assumed 
in the exit. In addition, the exit occurs at z equals L; however, the B+ 
coefficients have been redefined as follows 

or 

+ + +jkznL 
Bn = 'on e 

In this manner, the exponential terms do not appear in equation (SO). 

Gradient at Inlet and Exit 

The last boundary condition required concerns the gradient of H, at 
the inlet and outlet of the nonuniform finite element region. 
element analysis to be developed in the next section, a contour integral term 
will be developed which will contain the term OH, n. 
ing wall, it was shown that this term is identical to zero. 
the entrance and exit interfaces, this term can be related to the modal equa- 
tion in the analytical region. At the inlet 

In the finite 

At a perfect conduct- 
However, along 

u - (5 aix aix 
e,) (-ez) = - - az OHx n = ay ey + 

while at the exit 

* 

ORx * i i = + -  aHX 
az 

(53) 

At the inlet and exit planes, continuity of the tangential component of 
the electric field is required across the interface (ref. 12, eq. 1.60). 
Employing equation (11) to express the tangential electrlc field in terms of 
the magnetic field (ref. 13, eq. 7-4) yields 

For the special cases where the properties remain constant across the Inter- 
face, equations (53) and (54) simplify to the following forms: 

aH 
az 6 = - - (inlet) 
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and 

vix* n = + - aHxb ( e x i t )  
a Z  ( 5 7 )  

I n  general, t h e  gradient  o f  t he  magnetic f i e l d  i s  continuous except when there 
i s  a change i n  p e r m i t t i v i t y .  

.FINITE ELEMENT THEORY 

The f i n i t e  element fo rmula t ion  o f  t he  electromagnet ic wave equat ion i s  
now generated by us ing the  Ga lerk in  method ( r e f .  14) t o  ob ta in  an i n t e g r a l  
form o f  t he  va r iab le  p roper ty  wave equat ion over the  whole ( g l o b a l )  domain D 
shown i n  f i g u r e  5. 

System D i s c r e t i z a t i o n  

The continuous domain D i s  f i r s t  d i v ided  i n t o  a number o f  d i s c r e t e  
areas staked out by the nodal po in ts  as shown i n  f i g u r e  6. Although the  nodal 
p o i n t s  a re  shown evenly spaced i n  f i g u r e  6, t he  advantage o f  f i n i t e  element 
theory i s  t h a t  i t  a l lows the  placement o f  nodes a t  any p o s i t i o n  des i red.  
Another a t t r a c t i v e  fea ture  o f  the  f i n i t e  element theory i s  t h e  a b i l i t y  t o  
charge element proper t ies i n  an easy manner. 

Next, t he  continuous magnetic f i e l d  component Hx(y,z) w i l l  be approx i -  
mated (curve f i t t e d )  i n  terms o f  the  nodal p o t e n t i a l  values Hxi  loca ted  a t  
y i ,  t i ,  as shown i n  f i g u r e  6. The subscr ip t  i r e f e r s  t o  any nodal p o i n t  i n  
t h i s  domain. The curve f i t  i s  requ i red  s ince the  v a r i a b l e  p roper l y  wave equa- 
t i o n  w i l l  be in tegra ted  over the  domain D shown i n  f i g u r e  5 and the  curve 
f i t  w i l l  a l l o w  us t o  determine the  value o f  Hx i n s i d e  the  element. This 
cont ras ts  w i t h  the s implest  form o f  f i n i t e  d i f f e r e n c e  theory ( t a y l o r  ser ies)  
which usua l l y  only determines the  values o f  t he  dependent v a r i a b l e  a t  t he  
lumped nodal po in ts .  

GLOBAL WEIGHTED RESIDUAL APPROACH 

I n  the  c lass i ca l  weighted res idua l  manner, the  magnetic f i e l d  i n t e n s i t y  
component 
nodal values Hxi (y i ,z)  and a ser ies  o f  bas is  (shape) func t lons ,  such t h a t  

Hx(y,z) I s  curve f i t t e d  by expanding i n  terms o f  a l l  the  unknown 

N 

where the  bas is  o r  weight func t ions  
dependance o f  ‘iix(y,z) i n  terms o f  H x i  which represents the  unknown value 
o f  the  magnetic f i e l d  i n t e n s i t y  component a t  t he  i nodal p o i n t  i n  the  g loba l  
reg ion.  I n  t h e  g lobal  approximation, the  weight W i  has the  proper ty  o f  
being u n i t y  a t  node i 
equat ion (44) t h e  ha t  over the  Hx(y,z) i nd i ca tes  t h a t  i t  i s  the  approximate 
numerical so lu t i on  t o  Hx(y,z) .  The nodes are  numbered 1.2 ,  . . . N and the  
g loba l  vector  { H x }  represents the  sca la r  values of t he  unknown magnetic 
i n t e n s i t y  component Hx a t  each node, such t h a t  i n  ma t r i x  form 

W i  (y,z)  charac ter izes  t h e  s p a t i a l  

and IdenL ica l  t o  zero a t  a l l  o ther  nodes. As  before i n  
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o r  l ~ ~ j ~  =p x l  H x2 . Hxi . . ' HxN] (59)  

Since i x ( y , z )  i s  on ly  an approximation t o  the  t r u e  s o l u t i o n  Hx(y,z), 
s u b s t i t u t i o n  o f  equat ion (58) i n t o  the governing wave equat ion (26) and i n t e -  
g r a t i n g  over the  domain 0 shown i n  f i g u r e  5 w i l l  no t  be equal t o  zero, as 
requ i red  by the  exact s o l u t i o n  bu t  leave a res idua l  e r r o r  which i s  def ined 
as R 

I n  accordance w i t h  the  method o f  weighted res idua ls ,  t he  assumed basis  func- 
t i o n  W i  and the  d i s t r i b u t i o n  o f  e r ro rs  R are  forced t o  be orthogonal  
( R i  = 0)  w i t h i n  the  reg ion  by l e t t i n g  

(1  = 1.2, . . . N equat ions) (61 1 

Thus, t he re  are  n separate equations ( w r i t t e n  i n  compact form); one equat ion 
f o r  each o f  t he  N nodal H x i  unknowns. I n  a d i r e c t  analogy t o  the  f i n i t e  
d i f f e r e n c e  weighted res idua l  control-volume fo rmula t ion  ( r e f .  15,  p. 30) ,  each 
o f  the  above N equations represents a h igher  order  d i f f e r e n c e  approximation 
a t  t he  nodal p o i n t  i where W i  has a value of u n i t y .  

By making use o f  the vector  i d e n t i t y  o f  a sca la r  q~ and a vector  V 

v . (JrV) = Jrv v t v VqI (62) 

and by l e t t i n g  ~r equal weight Wi and v equal t o  ~ / C T  VGy, equat ion (61) 
can be expanded t o  

- - V G x  VWi t W ~ O  pHx dydz = 0 -1 
~ ( 1  = 1,2, . . . N equation) 
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F i n a l l y ,  us ing  the divergence theorem. o f  Gauss ( r e f .  16, p. 79, eq. 4.7(b)), 

kv ii) ds 

,f(V V )  dydz = 

where ii i s  t h e  u n i t  outward normal vector  t o  the  boundary curve s, t h e  
f i r s t  term i n  equation (63) can be converted i n t o  a sur face i n t e g r a l  such t h a t  

- Wiw2pflx] dydz - V f l x  6) ds = 0 
"T 

( 1  = 1,2, . . . N equat ions) (65) 

I n  e f f e c t ,  the second order d i f f e r e n t i a l  equat ion has been reduced t o  a 
f i r s t  order equation a l l ow ing  the use o f  t he  weak fo rmula t ion  o f  t he  f i n i t e  
element theory.  Thus i n  the  Ga lerk in  f i n i t e  element approximat ion t o  f o l l o w ,  
s imple c lass C, shape func t ions  can be employed t o  approximate W i .  Across 
an element shown i n  f i g u r e  6 f o r  example, t he  c lass  CO func t ions  a re  on ly  
continuous i n  the dependent va r iab le  Hx and a re  discont inuous I n  slope. I f  
the  second order wave equat ion (61) i s  t r ea ted  d i r e c t l y ,  then Hermi t ian c a l l s  
C1 func t ions  are  requ i red  t o  approximate W i  ( r e f .  7 ) .  I n  these c lass  C 1  
func t ions ,  both the va r iab le  and i t s  slope a re  continuous across a boundary. 

F I N I T E  ELEMENT APPROXIMATION 

Both the  s p e c i f i c a t i o n  o f  t he  g loba l  we igh t ing  f u n c t i o n  W i  and t h e  g lo -  
b a l  i n t e g r a t i o n  over the  whole domain D i n  f i g u r e  5 requ i red  by equat ion (65) 
a re  no t  p r a c t i c a l .  However, t he  i n t e g r a t i o n  can r e a d i l y  be performed by sub- 
d i v i d i n g  the  domain i n t o  smal ler  elements 
t i o n  W i  i n  terms o f  the nodes o f  an i n d i v i d u a l  element, i n t e g r a t i n g  over an 
I n d i v i d u a l  element and sunning a l l  the  elements together .  

A,, d e f i n i n g  the  g loba l  shape func- 

Equation (65)  I s  v a l i d  over the  e n t i r e  domain D shown i n  f i g u r e  5 o r  any 
subdomain 
ded i n  the  region as depic ted I n  f i g u r e  5. 
o f  the  weighted res idua l  method, the  domain D i s  assumed t o  be d i v ided  i n t o  
H elements def ined by N nodes, see f i g u r e  6. I n  t h i s  case, equat ion (65) 
can be w r i t t e n  as 

A,, as represented by the  area o f  a smal l  t r i a n g u l a r  element embed- 
To begin the  f i n i t e  element aspect 

- 1 N 

- U*I.I e x 1  W )  dydz -$(dl - E vflx n ) d s  = 0 
Te e= l  e S 

( 1  = 1,2, . . . N equat ions) (66) 

Where the proper t ies  a re  now given a Subscr ip t  
vary from element t o  element. 
equat ion (66) appl ies t o  an i n d i v i d u a l  element, t he  l i n e  i n t e g r a l  i s  s t i l l  
def ined over the g loba l  surface area, and as such, can be t rea ted  independ- 
e n t l y  from the  loca l  area i n teg ra t i ons .  

e t o  i n d i c a t e  t h a t  they may 
Note,  a l though the  area i n t e g r a t i o n  i n  



LOCAL SHAPE FACTORS 

Each element is defined by the nodes around its perimeter, while Hxi 
are defined at these nodes. However, the value of Hxi inside the element 
are required to perform the Integration. To represent the variation inside 
the elements of the field variable H, and its derivatives, local interpola- 
tion shape functions Ni(y.2) for linear triangles are written in both scalar 
and matrix form as 

where {H,} (e) i s  the vector of nodal values of Hx for a general element 
e with subscripts 1, 2, and 3 representing the nodal positions as shown in 
figure 5. The subscripts 1, 2, and 3 take on the actual nodal number of 
figure 6 when applied to a specific element. 

The form of the local shape matrix [ N ]  (e) depends on the type of element 

is simple in form and can really be found in nearly every test on finite 
finite elements (ref. 6). 
has the property of being unity at node j and zero at the other nodes Zn the 
triangle. A graphical description of  N is shown in figure 3 of reference 14. 
Replacing 
equations bePame 

For the linear triangular element employed herein, the known value of 
NJ 

Like its global counterpart W i *  the local 3 

by Riel in equation (66), the new governing finite element 

(1 = 1,2,  . . . N equations) (68) 

GALERKIN APPROXIMATION 

The weight W,(y,z) is now approximated by multiple values of (see 
ref. 14, fig. 3). 
weighted residual approach assumes that 

in all elements containing the i node. For all elements which do not con- 
tain the node i, the welght Wi is assumed zero not only at all other 
nodes (as required by the general deflnition of Wi) but also at all values 
of y and z in the elements which do not contain the node 1. 

Recognizing that I s  zero for all elements not having the unknown 
Hxi associated with a pahicular element, the finite element equation (68) 
can now be written I n  compact form as 

Adapting the Galerkin approximation to the more geheral 

(69) 
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(1  = 1,2, . . . .  N equat ions) (70) 

a i x  
az  

1 - 
‘Te 

- 
E x 1  t 

where N i  a r e  the known shape func t ions  ( r e f .  6, eq. (3.05)) .  I n  general 
most o f  t h e  H elements i n  t h e  sumnation w i l l  have (6yo  con t r i bu t i on ,  s ince 
on ly  i f  the  i mode i s  p a r t  o f  t he  element w i l l  N have a nonzero value. 
Likewise, t h e  l i n e  I n t e g r a l  can on ly  c o n t r i b u t e  t o  a p a r t i c u l a r  equation, 
i f  the  node i s  on the  boundary. For a l l  i n t e r i o r  n s, t h e  l i n e  i n t e g r a l  
term i n  equation (70) w i l l  no t  con t r i bu te ,  s ince Ni ‘‘’ w i l l  have a zero value 
on the  boundary. 

i 

dy = 0 
z=L 

SURFACE INTEGRAL AND BOUNDARY CONDITIONS 

The surface i n t e g r a l  i n  equat ion (70) can be r e w r i t t e n  along the  boundary 
’ i n  f i g u r e  5 as 

) = 1 (pvx . 6) ds 
Te 

f ( N i e )  \e pflLe)- ! ds 
C 

Entrance 

+ N:e) \e ( V i x  ”> ds + 
Ex1 t PEC 

( V i x  6) ds 
Te C 

As shown i n  equation ( 4 2 ) ,  t he  grad ien t  do t ted  i n t o  the  outward normal i s  
i d e n t i c a l  t o  zero along a p e r f e c t  e l e c t r i c a l  conductor (PEC); thus,  t he  l a s t  
sur face i n t e g r a l  on the  r i g h t  hand s ide o f  equat ion (71) i s  i d e n t i c a l  t o  zero. 
I n  add i t i on ,  a t  t h e  entrance, the  a x i a l  d e r i v a t i v e s  i n  the  l i n e  i n t e g r a l  a t  
the  entrance and e x i t  planes represent the  value o f  s lope j u s t  i n s i d e  the  
f i n i t e  element domain. They can be r e l a t e d  t o  the  slopes i n  the  a n a l y t i c a l  
reg ion  through boundary cond i t i on  equations (56) and ( 5 7 ) .  Therefore, 

Thus, the  f i n i t e  element equat ion (70) can be r e w r i t t e n  as 

dy = 0 

z=L 
(72) , 

dY 
z -0 

(73 )  

( 1  = 1,2, . . . N equat ions) 
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where t h e  gradients  i n  the  f i n i t e  element reg ion  i n  equat ion (73) a t  t he  
entrance and e x i t  planes can be re la ted  t o  g rad ien ts  i n  t h e  entrance and e x i t  
ducts,  equations (32) and (34) through equat ion (55) .  

F I N I T E  ELEMENT EQUATIONS 

Expanding -(e) H in terms of the we igh t ing  f u n c t i o n  equat ion (67), and 
neg lec t i ng  the  supface i n t e g r a l s  fo r  s i m p l i c i t y  i n  w r i t i n g  (exact  f o r  c e n t r a l  
elements), equat ion (73) becomes 

2 (Hx\(eY l L  'Te N i e '  [PN] (e )  - a2peN!e' [N]  ' e ) }  dydz = 0 

e=l  
Ae 

(i = 1,2, . . . N equat ions) (74) 

where the  { H x l  (e )  
be p u l l e d  ou ts ide  t h e  area i n t e g r a t i o n  s ince i t  does n o t  depend on t h e  area 
coordinates.  

l o c a l  magnetic f i e l d  i n t e n s i t y  component column vector  can 

Equation (74) could i n  p r i n c i p l e  be evaluated f o r  each i t o  y i e l d  a se t  
o f  N simultaneous equations f o r  the N unknown value o f  Hxi. However, 
t h i s  approach i s  no t  r e a d i l y  implemented on a d i g i t a l  computer. Rather, each 
element i s  t r ea ted  independently and t h e  con t r i bu t i ons  o f  a s i n g l e  element t o  
a l l  N equations def ined by equation ( 7 4 )  a re  determine simultaneously f rom 
the  f o l l o w i n g  

I n  con t ras t  t o  the  i subscr ip t  o f  equat ion ( 7 4 )  f o r  a l l  nodes i n  the  g loba l  
domain, here the  subscr ip t  j sums on ly  the  th ree  nodes o f  a p a r t i c u l a r  e le -  
ment. I n  compact standard f i n l t e  element f o r m ,  equat ion (75) can be r e w r i t t e n  
as 

where 

4e 

w i t h  
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For t r i a n g u l a r  elements, t he  eva lua t ion  of equat ion (77) i s  q u i t e  s imple and 
presented i n  many t e x t s  ( r e f .  18, p. 149, eq. (8.42) f o r  t h e  f i r s t  two terms 
and page 45 f o r t h e  l a s t  term). The surface I n t e g r a l  i s  evaluated i n  a s imi -  
l a r  manner. Shor t ly ,  a d iscuss ion  i s  g iven on how equat ion (76) i s  used t o  
b u i l d  up equation (74). 

MODAL COEFFICIENTS 

I n  a d d i t i c n  t o  the  N f i n i t e  element g loba l  equat ions (eq. 74) requ i red  
t o  determine H x i  values, a d d i t i o n a l  equations a re  requ i red  f o r  each unknown 
value Ah and Bt; which descr ibe H, i n  t h e  a n a l y t i c a l  entrance and e x i t  
reg ion  t o  the  f i n i t e  element domain. The unknown c o e f f i c i e n t  Ah and B& 
couple t o  the  f i n i t e  element domain through the  sur face i n t e g r a l  t e r m s  i n  
equat ion (73) .  For convenience i n  the  f i n i t e  element so lu t i on ,  t he  unknown 
nodal c o e f f i c i e n t s  A i  and 8& are  incorporated i n t o  t h e  g loba l  unknown 
vector  {Hx)  such t h a t  

#u #u 

B+B+ . . . B i  ] (79) 
m ( 0 )  = [I; A; . . . ANmixl, Hx2, . . . Hxi . . . HxN 1 2 

GLOBAL F I N I T E  ELEMENT EQUATIONS 

Along w i t h  equations (48) and (50) which de f i ne  t h e  modes i n  the  a n a l y t i -  
c a l  reg ion,  using the standard f i n i t e  element procedures ( r e f .  18) t h e  elemen- 
t a l  equat ion ( 7 6 )  can be assembled i n t o  equat ion (74) t o  y i e l d  the  f o l l o w i n g  
g loba l  se t  o f  simulLaneous equations which can be solved t o  ob ta in  t h e  unknown 
modal i n t e n s i t i e s  H x i  and unknown c o e f f i c i e n t  A i  and BA: 

Here, t he  column vector  F contains boundary c o n d i t i o n  i n fo rma t ion  which 
inc ludes i n p u t  modal cond i t i on  A+ ( r i g h t  hand s ide  o f  equat ion (48) .  The 
g loba l  s t i f f n e s s  ma t r i x  [ K ]  i s  t he  sum o f  the  known l o c a l  s t i f f n e s s  m a t r i x  
[K](e) def ined by equation ( 7 7 ) .  
Gauss so lver  y ie lds  9. 

The s o l u t i o n  o f  equat ion (80) by a banded 

Next, t he  so lu t i on  o f  equat ion (80) f o r  a number o f  element d i s c r e t i z a -  
t i o n  pa t te rns ,  absorber ma te r ia l s  and nodal i npu ts  w i l l  be considered. 

RESULTS AND COMPARISONS 

For theory and code va l i da t i on ,  f i r s t  t h e  f i n i t e  element so lu t i ons  w i l l  
be app l ied  t o  a number of problems where exact so lu t i ons  e x i s t .  
f i n i t e  element so lu t ions  w i l l  be app l ied  t o  a number o f  problem w i t h  var ious 
types o f  absorbers mounted on the  wa l l s .  

Next, the  

I n  a l l  t he  examples t o  fo l low,  the  p roper t i es  o f  t he  entrance reg ion  a re  
assumed t o  be un i t y  

El = 1 

lJ1 = 1 
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I n  add i t i on ,  t he  length  o f  t he  f i n i t e  element domain and he igh t  o f  the  
entrance duct  a re  he ld  a t  u n i t y .  

For the  l i n e a r  element considered here in,  t he  minimum requ i red  elements 
i n  t h e ' a x i a l  and t ransverse d i r e c t i o n  can be ca lcu la ted  from a formula devel-  
oped t o  g i v e  reasonable accuracy ( r e f .  7, eq. 48) us ing  f i n i t e  d i f f e r e n c e  
theory.  

Number a x i a l  element 2 12 L d 2 n  (82) 

Number t ransverse elements 12 (n  - 1) n 2 2 (83) 

where n i s  t he  h ighest  t ransverse mode t o  be resolved. I n  each example, a 
p i c t o r i a l  o f  t he  g r i d  d i s c r e t i z a t i o n  I s  shown d i r e c t l y  above the  p l o t s  o f  t h e  
Hx s p a t i a l  va r ia t i ons .  

Example 1. - Plane Wave Propagation i n  P e r f e c t l y  Conducting Duct 

As  t he  f i r s t  example o f  t he  f i n i t e  element technique, consider the  
problem o f  an i n f i n i t e  long duct  w i t h  p e r f e c t l y  conduct ing w a l l s  and w i t h  a 
plane Hx wave propagat ing t o  the  r i g h t  from - i n f i n i t y  w i t h  a frequency 
o f  o = 2r .  For t h i s  case, t he  wave cont inues propagat ing t o  t i n f i n i t y  
w i thou t  producing any r e f l e c t e d  waves. The exact a n a l y t i c a l  expression f o r  
Hx can be w r i t t e n  ( r e f .  11, p. 457) as 

-jkl x 
, (84)  = cos 2nx - i s i n  2nx lHxl= e 

As  seen i n  f i g u r e  7, a comparison between the  exact a n a l y t i c a l  r e s u l t s  
and t h e  f i n i t e  element ana lys is  shows very good agreement between both analy-  
s i s .  The f i n i t e  element ana lys is  predic ted A- c o e f f i c i e n t s  o f  zero f o r  t h e  
entrance region+(no r e f l e c t i o n s )  and u n i t y  f o r  the  a1 c o e f f i c i e n t  w h i l e  
h igher  order  B c o e f f i c i e n t s  were appropr ia te ly  near zero. 

F igure  8 app l ies  t o  the  same example on ly  the  magnitude o f  t he  Hx wave 
i s  d isp layed where the  magnitude Hx i s  de f ined as 

l H x l  = 1/Re(Hx)2 t Im(Hx)2 

F igure  9 d isp layed the  a x i a l  f l u x  o f  energy (Poynt ing vector)  def ined by 
( r e f .  11, eq. (8-69) 

1 t 
(y ,z)  = T Re (E x H ) 'ave 

The t o t a l  power rad ia ted  down the duct i s  g iven by 
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I n  a l l  cases, the i n l e t  t o t a l  power i s  normal ized as u n i t y .  Thus as expected 
i n  f i g u r e  9, t he  t o t a l  power remains a t  a u n i t y  value throughout t h e  duct.  

According t o  equat ion (87) ,  t he  grad ien t  of Hx i s  requ i red  t o  determine 
t h e  Poyning vector. I n  the  a n a l y t i c a l  entrance and e x i t  regions the  grad ien t  
can, o f  course, be determined exac t l y  from t h e  known a n a l y t i c a l  expressions. 
However, i n  t h e  f i n i t e  element reg ion  some e r r o r  i s  in t roduced s ince the  gra- 
d i e n t  i s  a constant throughout a t r i a n g u l a r  element ( r e f .  18, p. 30). This 
requ i res  many s m a l l  elements t o  approximate a r a p i d  change i n  the  v a r i a b l e  
Hx. 
coarse f i n i t e  element g r i d  w i l l  s u f f i c e ,  s ince t h e  a n a l y t i c a l  expressions f o r  
t he  d e r i v a t i v e s  are known exac t ly .  I n  f i g u r e  9, t he  small e r r o r  i n  the  f i n i t e  
element reg ion  ( z  = 0 t o  1) r e s u l t s  f rom the  coarse elements, smal ler  elements 
w i l l  reduce t h i s  e r r o r .  

However, i f  on ly  the  t ransmi t ted  and r e f l e c t e d  energy a re  requ i red  a 

Example 2. - Th i rd  Propagating Mode i n  P e r f e c t l y  Conducting Duct 

As  t h e  second example o f  the  f i n i t e  element technique, again consider  t h e  

(A ) wave propagating t o  the  r i g h t  f rom - I n f i n i t y  w i t h  a frequency o f  
problem+of an i n f i n i t e l y  long duct w i t h  p e r f e c t l y  conduct ing wa l l s  and the  
TI4 
o z06.9?1 ( f  = 1.1). 
i n f i n i t y  w i thout  producing any r e f l e c t e d  waves. The exact a n a l y t i c a l  expres- 
s ion  f o r  TM30 can be w r i t t e n  according t o  equations (30) and (29) as 

Again f o r  t h i s  case the  wave cont lnues propagat ing t o  + 

13-1 ) ( ~ 1  
z3 2n x 1.1 = 2n X 1.1 dl - ( = 2.881 

- j k  z 
Hx = e z3 = cos 2.8812 - j s i n  2.8812 ( Y  = 0) 

where the  frequency o f  the  wave has been increased over the  value o f  1 I n  
example 1 t o  1.1 so t h a t  t he  t h i r d  mode i s  now propagat ing w h i l e  the  f o u r t h  
mode i s  c u t  o f f .  

Again, as seen i n  f i g u r e  10 f o r  the  r e a l  and imaginary pa r t s  o f  Hx, 
and i n  f i g u r e  11 f o r  the  magnitude o f  
a n a l y t i c a l  resu l t s  a re  i n  good agreement. 

Hx, t he  f i n i t e  element and exact 

Example 3. - Ref lec t ion ,  Transmission, and Absorpt ion o f  Plane Waves 

A s  our next se t  o f  v a l i d a t i o n  problems, consider the  phenomenon o f  
r e f l e c t i o n  which occurs when a uni form plane wave i s  normal ly  i n c i d e n t  on the  
boundary between regions composed o f  two d i f f e r e n t  ma te r ia l s ,  as shown . 
f i g u r e  12.  The exact a n a l y t i c a l  r e s u l t s  a re  g iven i n  standard textbooks. 
However, the  exact a n a l y t i c a l  r e s u l t s  have been s l i g h t l y  mod i f ied  t o  account 
f o r  t he  f a c t  t ha t  the  i n c i d e n t  plane wave contacts  the  i n t e r f a c e  a t  z equal 
t o  Ld. 
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The exact a n a l y t i c a l  equations can be w r i t t e n  i n  t h e  f o l l o w i n g  form 

H(’) X = “ x i  Hxr  ( z  < Ld) 

Hxi = Hi0 e -’ 1 

“ x r ‘ =  Hro etYlZ 

H, (2 )  = Hxt = Hto e - Y 2  

( z  < Ld) 

( z  < Ld) 

( z  > Ld) 

where the  magnetic f i e l d  i n  reg ion  (1) Hx ( ’ I  i s  composed o f  an i n c i d e n t  f i e l d  
H x i  and a r e f l e c t e d  f i e l d  Hxr whose magnitudes and propagat ion constants 
a re  def ined i n  equations (92) and (93) w i t h  

Y1 = + j+q (ec, = 0)  

I n  reg ion  (2 ) .  Hx ( 2 )  i s  composed on ly  o f  a t ransmi t ted  magnetic i n t e n s i t y  
de fer red  by equat ion (94) w i t h  

(95) 

( r e f .  19, p. 388, eq. (32).  For convenience i n  ob ta in ing  numerical r e s u l t s ,  
y2 has been expressed i n  terms o f  a2 ( r e a l  p a r t )  and 02 ( imaginary p a r t ) .  
O r  so l v ing  f o r  a2 and 02 ( r e f .  11, p. 364 P. 8-6 o r  r e f .  12, p. 2-1) 

A t  z = Ld, the  magnetic i n t e n s i t y  i n  reg ion  (1) must be equal t o  the  
magnetic i n t e n s i t y  i n  reg ion  ( 2 ) ;  consequently, equations (91) and (92) a re  
equated. Likewise, the  i n c i d e n t  and r e f l e c t e d  e l e c t r i c  f i e l d s  i n  reg ion  (1 )  
must be equal t o  the  t ransmi t ted  e l e c t r i c  f i e l d  I n  reg ion  (2 ) .  The e l e c t r i c  
f i e l d s  can be expressed i n  t e r m s  o f  t h e  magnetic f i e l d s  by employlng Haxwel l ’s  
equations. These two conservat ion equations can now be solved f o r  the  unknown 
r e f l e c t e d  Hro and t ransmi t ted  H t o  wave magnitudes i n  t e r m s  o f  t he  known 
i n c i d e n t  magnitude H i o  

-2Y1 Ld 
- -  - r e  Hro 

0 

- (Y1 - Y2)L(j - -  - ~ e  H t o  

Hi 0 
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wi th  the  r e f l e c t i o n  r and t ransmiss ion T c o e f f i c i e n t  de f ined as 

n1 - n2 

n2 + nl 
r =  

( r e f .  13, eq. 5-97) 

1 s  

n2 + “1 

( r e f .  13,  eq. 5-98) 

The impedance ‘11 and 02 have the  usual convenient d e f i n i t i o n s  ( f o r  
p o s i t i v e  values) 

( r e f .  13, eq. 7-50) 

The f i r s t  case w i l l  consider a step change i n  p e r m i t t i v i t y  from 1 t o  4 
a t  z equal t o  0.25. As shown i n  f i g u r e  13, t he  z equals 0.25 i n t e r f a c e  
occurs i n  the  t h i r d  row o f  elements which have been decreased i n  s i z e  t o  
account f o r  the smal ler  wave length  i n  the  h igher  p e r m i t t i v i t y  m a t e r i a l .  As 
seen i n  f i g u r e  13, t he  f i n i t e  element and exact a n a l y t i c a l  theor ies  a re  i n  
exce l l en t  agreement. Note the s h i f t  i n  s lope o f  the  r e a l  component a t  t he  
i n t e r f a c e  which i s  au tomat ica l l y  accounted f o r  i n  t h e  theory,  because o f  v a r i -  
ab le  p roper ty  assumption i n  equat ion (26).  F igure  14 shows s i m i l a r  good 
agreement between the f i n i t e  element theory and t h e  exact a n a l y t i c a l  r e s u l t s  
f o r  t he  absolute magnitude o f  t he  magnetic i n t e n s i t y  Hx. 
f r o m  the i n t e r f a c e  are  c l e a r l y  represented by the  standing wave p a t t e r n  ahead 
o f  t he  In te r face .  Observe t h a t  t he  magnitude o f  Hx increases i n  t h e  mate- 
r i a l .  The opposite e f f e c t  w i l l  be seen I n  the  next example. 

The r e f l e c t i o n s  

The second case considers a step change i n  pe rmeab i l i t y  from 1 t o  4 a t  
z equals t o  0.05. I n  t h i s  case, the i n t e r f a c e  occurs i m e d i a t e l y  a f t e r  the  
very f i r s t  row of elements shown i n  f i g u r e  15. As  seen i n  f i g u r e  15, t he  
f i n i t e  element and exact a n a l y t i c a l  theor ies  a re  i n  exce l l en t  agreement. f o r  
t h i s  p a r t i c u l a r  example the  s lope i s  continuous throughout both domains as 
expected s ince equation ( 5 5 )  i nd i ca tes  t h a t  t h e  s lope i s  continuous f o r  
changes i n  permeabi l i ty .  F igure 16 shows s i m i l a r  good agreement between the  
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finite element theory and the exact analytical results for the absolute magni- 
tude of the magnetic Intensity 
resented by the standing wave pattern ahead of the interface. 
be previous example, the magnitude of Hx 

Hx. Again the reflections are clearly rep- 

decrease in the material. 
In contrast to 

The final case considers a step change in conductivity from 0 to 2 at z 
equals 0.0. The jump in properties at z = 0 is handled through equation (55) 
which is employed in the entrance and exit integrals of equation (73). As 
seen in figure 17 a slight difference in the magnitude between the finite ele- 
ment and analytical results occurs. The analytical solution was developed 
from a three region model (ref. 1 1 ,  p. 347). A similar curve was obtained 
when the step change in conductivity was placed at z = 0.25 inside the finite 
element region. 
The error could not be eliminated with finer grid; therefore, it was assumed 
that the errors are a result o f  the discritization process which must be 
resol ved . 

Figure 18 shows a similar discrepancy for the Poynting vector. 

Example 4. - Wall Absorbers 

Figure 19 shows a configuration with an absorber region along the upper 
wall. For a wall material with a permeability of 1 and total permittivity of 
1.-j2., the energy attenuation 3 s  shown in figure 20. In figure 21, wall 
absorbers are placed at the top and bottom of the duct. For wall material 
with a permeability of 4.1 and permitivity of 1.-j 2.83, the wall absorption 
is shown in figure 22. 

Figure 23 displays contour plots of the magnitude of the magnetic field 
for the absorber configuration shown in figure 21. The solid line drawing 
show the complete contours, while the symbol are plotted at selective points 
in the companion figure so that the actual magnitude of the contour can be 
readily determined. For convenience the magnitude of the magnetic field has 
been renormallzed between 0 and 1 according to the formula 

IH X I - lHxmini 

I Hxcontour I = IHxmaxl - IHxminI 

where Hxmax 
plotting domain and Hxmin is the minimum value of Hx in the plotting 
domal n . 

is the maximum value of magnitude of the magnetic field in the 

In figure 23(a) only one mode (plane wave) is assumed in the modal expan- 
sion. In this case, 

lArl = 1.0 l B r l  = 0.458 

and the value of the Poynting vector at the exit has fallen from 1 to 0.210. 
In figure 23(b) three modes are assumed in the modal expansion. In this case, 

lAil = 1 . O  IA;I = 0.1426 

-5 l A I l  = 0.0 IAi1 = 0.475~10 
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I A i (  = 0.0 I A i 1  = 0.664 l B j l  = 1.123 

Because o f  t h e  symnetrical nature of t h e  magnetic f i e l d ,  t h e  odd eigenfunc- 
t i o n s  have near zero c o e f f i c i e n t s .  
e x l t  has obtained a value o f  0.358. 

For t h i s  case, t h e  Poynting vector  a t  t he  

I n  t h e  contour p l o t  example shown i n  f i g u r e  23(c), f i v e  modes a re  assumed 
i n  the  modal expansion. I n  t h i s  case, 

= 1.0 IA;I = 0.1246 IF(( = 0.6501 

5 lA;l = 0.0  I A i I  = 0.376~10- IS;l = 0.398~10- 

1A;I = 0.0 IA;I = 0.0145 )B;I = 0.0264 

For t h i s  case the Poynting vector  a t  t he  e x i t  was 0.423. 

A s  seen I n  f i g u r e  23(c), the magnetic f i e l d  has decreased t o  near zero a t  

Future work w i l l  
the w a l l s  bu t  remains r e l a t i v e l y  h igh  i n  the  center o f  t he  duct.  I n  e f f e c t ,  
e lectromagnet lc energy beams through the  center o f  t he  duct.  
consider reducing the energy o f  t h i s  c e n t r a l  beam. 

F i n a l l y ,  i n  t h e  l a s t  contour p l o t  example, seven modes a re  assumed I n  the  
modal expansion. This contour p l o t  was f o r  p r a c t i c a l  purposes i d e n t i c a l  t o  
the  p l o t  shown i n  f i g u r e  23(c). I n  t h i s  case, t he  modal c o e f f l c i e n t s  are 

l A i l  = 1.0 l A i l  = 0.1204 = 0.659 

( A 2 (  = 0.0 

I A 3 1  = 0 . 0  I A i 1  = 0.6416 I B i l  = 1.160 

5 lB;l = 1 .185~10-  t 4 I A i 1  = 0.078~10- 

t 

t 5 lBil = 0 .951~10-  5 [ A 4 [  = 0.0 I A i 1  = 0.555~10- 

/ A i l  = 0.0  [ A i l  = 0.00286 IS;l = 0.00528 

and the normalized Poyntlng vector  a t  the e x i t  was 0.435, which i s  very c lose 
t o  the  value when f i v e  modes were assumed. I n  t h i s  seven mode expansion, the 
modal amplitudes of t h e  f i r s t  f i v e  modes are reasonably c lose  t o  the  values 
when a f i v e  mode expanslon was assumed. I n  add i t i on ,  t h e  ampl i tude o f  the 
seventh mode i s  very s m a l l .  Therefore, a f i v e  mode expansion leads t o  
convergence. 
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Example 5. - Thin Layer Absorbers 

The code has a zoom feature as shown in figure 24 for which the thin 
layered region is expanded for ease i n  visualization. 
properly variation in the material can be conveniently reproduced. 

Now, any desired 

Figure 25 displays a multiple thln film region analyzed. The attenuation 
of the region is shown In figure 26. 

CONCLUDING REMARKS 

The finite element method has been developed to handle the problem o f  

For higher frequencies many wave lengths will 
With the expanded 

electromagnetic propagation in a duct with varying wall properties and geome- 
tries. 
give very accurate results. 
exist in the duct requiring a large number of elements. 
memory capability of the modern computer, the restriction does not represent a 
severe limitation of the method. 

The numerical formulation is relatively simple to use and appears to 
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FIGURE 4.- AREA INTEGRATION FOR THE INTERFACE CON- 
T I N U I T Y  EQUATION. 
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FIGURE 7. - A COMPARISON OF THE AXIAL MAGNETIC INTENSITY 
VARIATION ALONG THE LOWER WALL I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN 
EXACT SOLUTION AND A F I N I T E  ELEMENT SOLUTION FOR A 
PLANE WAVE (MODE 1) INCIDENT AT 2 = 0 WITH 0 = 27T. 
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FIGURE 8.- A COMPARISON OF THE MAGNITUDE OF THE AXIAL 
MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL I N  
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AS OB- 
TAINED BY USING AN EXACT SOLUTION AND A F I N I T E  ELEMENT 

WITH o =  2T. 
SOLUTION FOR A PLANE WAVE (MODE 1) INCIDENT AT z = 0 
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FIGURE 9. - A COMPARISON OF THE AXIAL FLUX OF ENERGY 
(POYNING VECTOR) VARIATION I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN 
EXACT SOLUTION AND A F I N I T E  ELEMENT SOLUTION FOR A 
PLANE WAVE (MODE 1) I N C I D E N T  AT Z = 0. 
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FIGURE 10. - A COMPARISON OF THE AXIAL MAGNETIC INTENSITY 

VARIATION ALONG THE LOWER WALL I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN 
EXACT SOLUTION AND A F I N I T E  ELEMENT SOLUTION FOR MODE 3 
(TM30)  INCIDENT AT Z = O WITH 0 = 6.911. 
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FIGURE 11, - A COMPARISON OF THE MAGNITUDE OF THE AXIAL  
MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL I N  
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AS OB- 
TAINED BY USING AN EXACT SOLUTION AND A F I N I T E  ELEMENT 
SOLUTION FOR MODE-THREE INCIDENT (TH30) AT Z = 0 WITH 
0 = 6.911. 
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FIGURE 12.- A PLANE WAVE (TM10) WITH NORMAL INCIDENCE 
ON A PLANE BOUNDARY. 
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FIGURE 13. - A COMPARISON OF THE A X I A L  MAGNETIC INTENSITY 

VARIATION ALONG THE LOWER WALL I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS AND A CHANGE I N  PROPERTIES 
OF THE MEDIA AT Z 
OBTAINED BY USING AN EXACT SOLUTION AND A F I N I T E  ELEMENT 

WITH 0 = 2n. 

OF 0.25 (E1 = 1.0 A N D E 2  = 4-01 AS 

SOLUTION FOR A PLANE WAVE (MODE 1) INCIDENT AT z = 0 
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FIGURE 14. - A COMPARISON OF THE MAGNITUDE OF THE A X I A L  

MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL I N  
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A 
CHANGE I N  PROPERTIES OF THE MEDIA AT Z OF 0.25 (€1 = 

1.0 AND E2 = 4.0) AS OBTAINED BY USING AN EXACT SOLU- 

T I O N  AND A F I N I T E  SOLUTION FOR A PLANE WAVE (MODE-ONE) 
INCIDENT AT Z = 0 WITH 0 = 2T. 
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FIGURE 15.- A COMPARSION OF THE A X I A L  MAGNETIC INTENSITY 
VARIATION ALONG THE LOWER WALL I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS AND A CHANGE I N  PROPERTIES 

TAINED BY USING AN EXACT SOLUTION AND A F I N I T E  ELEMENT 

WITH 0 = 2T. 

OF THE MEDIA AT Z OF 0.05 (pi = 1.0 AND112 = 4.0) AS OB- 

SOLUTION FOR A PLANE WAVE (MODE-ONE) INCIDENT AT z = 0 
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FIGURE 16.- A COMPARISON OF THE MAGNITUDE OF THE A X I A L  
MAGNETIC INTENSITY VARIATIONS ALONG THE LOWER WALL I N  
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A 
CHANGE I N  PROPERTIES OF THE MEDIA AT Z OF 0.05 (1-11 = 
1.0 AND 1-12 = 4.0) AS OBTAINED BY USING AN EXACT SOLU- 

T I O N  AND A F I N I T E  ELEMENT SOLUTION FOR A PLANE WAVE 
(MODE-ONE) INCIDENT AT z = 0 WITH w = 27r. 
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FIGURE 17. - A COMPARISON OF THE MAGNITUDE OF THE A X I A L  
MAGNETIC INTENSITY VARIATIONS ALONG THE LOWER WALL I N  
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A 
CHANGE I N  PROPERTIES OF THE MEDIA AT Z OF 0.0 AS OB- 
TAINED BY USING AN EXACT SOLUTION AND A F I N I T E  ELE- 
MENT SOLUTION FOR A PLANE WAVE (MODE-ONE) INCIDENT AT 
Z = 0 WITH 0 = 271. 



= 1 p1 = 1 E2 = 1-j2 p2 = 1 = 1 p3 = I 

ABS (Hx) - EXACT ANALYSIS 
v w o u u I ~ ~ m o w a m  0 NUMERICAL SOLUTION 

-1 .o -.5 0 .5 1 .o 1.5 2.0 
AXIAL COORDINATE. z 

FIGURE 18. - A COMPARISON OF THE AXIAL FLUX OF ENERGY 
(POYNTING VECTOR) VARIATION I N  A UNIFORM DUCT WITH 
PERFECTLY CONDUCTING WALLS ANI) A CHANGE I N  PROPER- 
T I E S  OF THE MEDIA AT Z OF 0.0 AS OBTAINED BY USING 
AN EXACT SOLUTION AND A F I N I T E  ELEMENT SOLUTION FOR 
A PLANE WAVE (MODE-ONE) INCIDENT AT Z = 0. 
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FIGURE 19.- DISCRETIZATION OF A I R  F I L L E D  WAVE GUIDE 
WITH ABSORBERS MOUNTED ALONG THE UPPER WALL. 
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FIGURE 20.- EFFECT OF UPPER WALL ABSORBER ON THE MAGNI- 
TUDE OF THE AXIAL FLUX OF ENERGY (POYNTING VECTOR) FOR 
A THREE-MODE MODAL EXPANSION I N  THE ENTRANCE AND E X I T  
DUCTS, 
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FIGURE 21.- DISCRETIZATION OF A I R  F I L L E D  WAVE GUIDE 
WITH ABSORBERS MOUNTED ALONG BOTH THE UPPER AND LOWER 
WALLS, 
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FIGURE 22.- EFFECT OF UPPER AND LOWER WALL ABSORBERS 
ON THE MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNTING 
VECTOR) FOR A FIVE-MODE MODAL EXPANSION I N  THE EN- 
TRANCE AND E X I T  DUCTS. 
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FIGURE 23.- CONTOUR PLOTS OF MAGNETIC FIELD AMPLITUDE. 



ELEMENT NUMBERS UPPER SOFT REGION 

FIGURE 24.- ZOOM C A P A B I L I T I E S  OF F I N I T E  ELEMENT CODE. 



FIGURE 25.- MULTIPLE T H I N  F I L M  WALL ABSORBER CONFIGUZATION (NOT 
TO SCALE). 
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FIGURE 26.- EFFECT OF MULTIPLE T H I N  F I L M  WALL ABSORBER 
ON THE MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNTING 
VECTOR). 
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